Direct Port I/0 on the EP9302 from a "userland" process

Virtual memory vs physical memory

The 1/0 ports on ARM processors are memory mapped. That is, the port registers are hard wired to
fixed physical memory locations. In order to interact with ports therefore, a program must be able to
write to these particular memory locations. This is a problem for linux and indeed other operating
systems that enable and make use of a Memory Management Unit (MMU).

Memory management units allow operating systems make more flexible use of physical memory. A
program running (a process) on a system with memory management enabled sees a view of memory as
shown below:

Virtual memory

Physical memory

Process <:> MMU

As far as the process is concerned, it may be operating in an address space ranging from say 1GB up to
1.1GB in the virtual memory space. It will therefore make use of addresses in the range 0x40000000
(1GB) up to 0x46000000. The hardware platform in question may actually only have 256MB of
physical memory installed. The MMU will remap the processes address space to physical memory
without the process being aware that this has happened. The process has in fact no way of directly
accessing physical memory in this scheme - so how can we do direct port I/O. In order to see how we
need first to look at a linux function called mmap (Memory Map).

The mmap was designed to allow processes point at a file from disk and map it to memory i.e. get the
operating system to pretend that the file is actually part of memory (a bit like a paging file or virtual
memory file). This can be useful as it allows programs use pointers to access data within the file rather
than the more cumbersome file functions such as fread, fwrite, fseek and so on. When it comes to
physical memory, mmap has an extra bit of functionality. It can be used to map specific parts of
physical into the process's virtual memory space. Thus, an application can ask the OS (via mmap) to
configure the mmu such that a particular address range in physical memory (e.g. the address range that
contains port registers) into its virtual memory space. The function mmap returns an address which
represents an area with virtual memory. Write and reads from/to this address will be routed through the
MMU to the originally requested area in physical memory.

The call to mmap in the code below is as follows:

Port Addr essSpace = (unsi gned char *)mmap(0, get pagesi ze(), \
PROT_READ | PROT_WRI TE, MAP_SHARED, \
Fi | eHandl e, | OPORT_BASE) ;

The man (help) page for mmap lists its parameters as:

void *mmap(void *start, size_t length, int prot, int flags, int fd, off_t offset);

where:

start : This parameter can be used to specify where (in virtual memory) you would like to map or link to
be made. A value of 0 implies that you are not too concerned and the kernel will choose for you.

length: MMU's don't map single bytes. This would be a complete waste of memory considering the
overhead involved. In 32 bit systems, when a mapping is made, the MMU needs to relate a 32bit or 4
byte virtual address to a 32 bit physical address. Thus, a minimum of 8 bytes are required to relate
virtual memory locations to physical ones. If single byte mapping were to be allowed then most of
memory could be taken up with a mapping management table. To avoid this problem, MMU's usually
operate with a 'granularity' called a 'page'. For many systems a page of memory is 4KB. Thus, the
smallest amount of memory that can be mapped is 4K. Mappings also occur on 4KB boundaries so
physical memory locations starting at addresses such as:

0000 0000, 0000 1000, 0000 2000, FFFFFO00 1.e. the 3 least significant hex digits are zero.
The actual page size may not be 4KB - you can find this out by calling getpagesize(). In the case of the
call to mmap below, a single page is sufficient to contain all of the GPIO registers so the length of a
single page is requested.

prot: This specifies the protection flags for the mapped memory (read, write etc)

fd: This specifies the file handle for the file that is to be mapped to memory. When a real file is
involved, this is simply the value returned when the file open function on this file was called. If we
want mmap to map physical memory we would appear to have a difficulty here. To get around this
problem, we first open the pseudo file "/dev/imem" with a file open function. The file handle returned
is then passed in as 'fd' in the function call. The pseudo file /dev/mem' is backed by the kernel/device
driver and represents the system's physical memory - elevated privilege is required to access this file of
course.

offset: This is the address of the page you want remapped from physical memory (if that is indeed what
you are doing). In the case of the EP9302 processor, the address at which the GPIO registers start is
0x80840000.

The program below (leds.c) can be used to turn on or off the green and red LED's on the EP9302
development board. The LED's are attached to the two least significant bits of GPIO port E. GPIO
ports have data registers (DRA,DRB,...DRE etc) from which data can be read/written. They also have
data direction registers (DDRA, DDRB, ... DDRE and so on). The data registers allow programmers
configure individual port bits to be either inputs or outputs (a 'l' in a DDR bit implies that the

corresponding DR bit is an output). The program was compiled with static linking using the arm-elf-
gcc compiler.
To run type the following into a terminal window (on the 9302 board)

leds 00
This turns both LED's off
and

leds 11

to turn them both on (or any combination of 1's and 0's)

leds.c

#i ncl ude <stdio. h>

#i ncl ude <sys/nmran. h>

#i ncl ude <uni std. h>

#i ncl ude <fcntl. h>

#defi ne | OPORT_BASE 0x80840000
#def i ne PORTA _DR_OFFSET 0xO0
#defi ne PORTA_DDR OFFSET 0x10
#defi ne PORTB_DR_OFFSET 0x4
#def i ne PORTB_DDR OFFSET 0x14

#defi ne PORTE_DR_OFFSET 0x20
#def i ne PORTE_DDR_OFFSET 0x24

unsi gned char *Port Addr essSpace;

#defi ne DDRA (*(unsigned char *)(Port AddressSpace+PORTA DDR_OFFSET))
#defi ne DRA (*(unsigned char *)(PortAddressSpace+PORTA DR _OFFSET))
#define DDRB (*(unsigned char *)(Port AddressSpace+PORTB_DDR_OFFSET))
#define DRB (*(unsigned char *)(PortAddressSpace+PORTB_DR OFFSET))
#defi ne DDRE (*(unsigned char *)(Port AddressSpace+PORTE DDR OFFSET))
#defi ne DRE (*(unsigned char *)(PortAddressSpace+PORTE DR OFFSET))

int min(int argc, char **argv) {

int FileHandl e;

int GeenState, RedState;

printf("\nNote: This program must be run with root privilege\n");

if (argc 1=3) {
printf("usage: leds G Rn");
printf("where G=0 or 1. 1 turns Geen LED on\n");
printf("where R=0 or 1. 1 turns RED LED on\n");
return(-1);

}

G eenState = atoi (argv[1]);
RedState = atoi (argv[2]);

/1 open up /dev/nmem

Fi | eHandl e = open("/dev/ meni, O RDVR);

printf("The pagesize for this processor is %\ n", getpagesize());

Port Addr essSpace = (unsi gned char *)mmap(0, get pagesi ze(), \
PROT_READ | PROT_WRI TE, MAP_SHARED, \
Fi | eHandl e, | OPORT_BASE) ;

i f (PortAddressSpace == MAP_FAI LED) {
printf("\nUnable to nap nenory space\n");
return (-2);

}

DDRE = Oxff;
DDRB | = Oxff;
if (GeenState)
DRE | = Ox1;
el se
DRE &= Oxf e;
if (RedState)
DRE | = 0x2;
el se
DRE &=0xfd;

munmap(Port Addr essSpace, get pagesi ze());
cl ose(Fil eHandl e) ;
return(0);

	Direct Port I/O on the EP9302 from a "userland" process
	Virtual memory vs physical memory
	leds.c

